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A POSTERIORI ERROR ESTIMATION 
FOR VARIATIONAL PROBLEMS 

WITH UNIFORMLY CONVEX FUNCTIONALS 

SERGEY I. REPIN 

ABSTRACT. The objective of this paper is to introduce a general scheme for 
deriving a posteriori error estimates by using duality theory of the calculus of 
variations. We consider variational problems of the form 

inf {F(v) + G(Av)}, 
vEV 

where F: V -* R is a convex lower semicontinuous functional, G: Y -* R 
is a uniformly convex functional, V and Y are reflexive Banach spaces, and 
A : V -* Y is a bounded linear operator. We show that the main classes of a 
posteriori error estimates known in the literature follow from the duality error 
estimate obtained and, thus, can be justified via the duality theory. 

1. INTRODUCTION 

In this paper, we consider methods of a posteriori error estimation for a class 
of variational problems with convex functionals. The basic problem, in its general 
form, is to find u in a Banach space V such that 

(1.1) J(u, Au) = inf J(v, Av), 
vEV 

where J(v) = F(v) + G(Av), F is a convex, lower semicontinuous functional, G 
is a uniformly convex functional and A: V -> Y is a bounded linear operator. 
We assume that V and Y are reflexive Banach spaces endowed with the norms 

IVl, and 11.11, respectively. Let v c V be an approximation of u, then e = v - u 

is the approximation error. The aim of a posteriori error analysis is to obtain a 
computable error majorant M = M (v; D) which depends only on v and the given 
data set D. This majorant must possess the following two basic properties: 

(1.2). lle-llv < A4 (v; 'D) Vv E V, 
(1.3) M (vk; D) -+ 0 if Vk -> U in V. 

k-+oo 

Methods of a posteriori error estimation for partial differential equations received 
attention more than two decades ago (see [2, 3, 4, 5, 20]). Nowadays the literature 
on this subject is vast (see, e.g., [1, 15, 21, 23, 36] and the references therein). 
However, almost all methods can be collected into three main groups: 
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(A) residual methods, 
(B) methods based on gradient recovery, 
(C) equilibrated data methods. 

In the residual method (see, e.g., [1, 3, 4, 13, 36]) a weak norm of the residual 
function is taken for M. Methods (B) (see, e.g., [6, 37, 38]) are based on averaging 
(smoothing) approximate solutions obtained by the finite element method. These 
types of post-processing procedures give new approximations, which often are much 
more accurate. For this reason, the difference between the direct approximation 
and the averaged one can be used as an error indicator. Complementary energy 
principles were applied for getting error estimates in [7, 17, 18, 19] and in other 
papers. They formed the basis of methods (C) which apply special numerical proce- 
dures designed for getting the so-called "equilibrated functions" in complementary 
energy principles. 

In this paper, we present a unified approach to a posteriori error estimation that 
follows from the duality theory of the calculus of variations. In earlier papers, we 
used this theory to obtain a priori error estimates for variational problems with 
linear growth functionals [24, 25, 32] and a posteriori estimates for some classes 
of nonlinear variational problems [26, 27, 28, 29, 33, 34]. The aim of the analysis 
below is to introduce a general scheme for deriving a posteriori error estimates and 
to show that methods (A)-(C) can be identified with particular forms of the duality 
error estimate. 

The paper is organized as follows. In Section 2 we obtain the general a poste- 
riori estimate (2.12). The right-hand side of (2.12) is a sum of two nonnegative 
functionals MF and MG which are equal to zero if and only if the duality re- 
lations (2.9)(i)-(ii) are satisfied. In the remainder of Section 2, we pay special 
attention to the frequently encountered case when F is a linear functional. In this 
case, the estimate (2.12) should be replaced by a modified one (2.25). The modified 
error majorant is a sum of two nonnegative functionals MR and MD, which rep- 
resent a generalized measure of the residual and the error in the duality relations, 
respectively. In Section 3 we apply abstract results of Section 2 to several classes 
of variational problems. The goal of Section 4 is to compare the duality method 
with the aforementioned methods (A)-(C) and to show that they can be uniformly 
justified via the duality theory. 

2. DUALITY A POSTERIORI ERROR ESTIMATES 

2.1. Preliminaries. We begin by recalling some definitions. Let X be a reflexive 
Banach space. We consider functionals defined on elements of X with values in 
IR := R U { ?oo}. For a convex functional F one can define its domain domF := 
{x c X 11 F(x) < +oo} and its epigraph epi.F := {(x, a) E X x R 11 F(x) < ce}. 
We say that F is a proper functional if domYn 7& 0 and .F(x) > -oo for any x E X. 
The functional F is said to be lower semicontinuous (l.s.c.) if epi F E X x IR is a 
closed set. For the set of all proper, convex, l.s.c functionals we use the notation 
Fo(X). Let X* be the space topologically dual to X with duality pairing (.,.) and 
F E FO(X). The function F*: X* -+ R defined by 

.F*(x*) := sup{(x*,x) -F(x)} 
xEX 

is called the Fenchel conjugate of F. Directly from this definition it follows that 

(2.1) F(x)+.F*(x*)-(x*,x) > 0 VxEX, x*EX*. 
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An element x* E X* satisfying the equality .F(x) + F* (x*) - (x*, x) = 0 is called a 
subgradient of F at x. The set of all subgradients of F at x is denoted by &.F(x). If 
&.F(x) consists of the unique element x*, then F is said to be Gdteaux-differentiable 
at x and we write x* = F'(x). 

Throughout this paper we use two pairs of dual Banach spaces (V, V*) and 
(Y, Y*) with duality pairings (.,.) and ((.,.)), respectively. The spaces Y and Y* 
are endowed with the norms 11 11 and 11 11* Let A be an element of the space B(V, Y) 
of all bounded linear operators from V to Y. We assume that 

(2.2) IlAwll > co llwllv Vw E V, 

where co is a positive constant independent of w. In addition to A we introduce its 
conjugate A* E B(Y*, V*) as the operator satisfying the identity 

(2.3) (y*, Av)) = (A*y*, v) Vy* E Y*, v E V. 

Besides, we introduce two convex functionals 

(2.4) FE Foo(V) and GE Fo(Y) 

which compose the functional 

J(v, Av) F(v) + G(Av). 

The latter functional is assumed to be coercive on V, i.e., 

(2.5) J(v,Av) -- +oo if llvllv - +?o. 

Lastly, we note that IR+ denotes the set of all positive real numbers, the abbreviation 
"iff" is used instead of the words "if and only if" and the symbol ":=" means "equal 
by definition". 

2.2. Primal and dual problems. Let us start by giving the formal statement of 
the considered variational problem. 

Problem P. Find u E V such that 

(2.6) J(u, Au) = inf P : inf J(v, Av). 
vCV 

The problem dual to (2.6) is (see, e.g., [12]) 

Problem P*. Find p* E Y* such that 

J*(A*p*,-p*) = sup P* sup -J*(A*y*,-y*) 
(2.7) 

J*(A*y* -y*) := F*(A*y*) + G*(-y*), 
where F* and G* are the functionals conjugate of F and G, respectively. 

The following existence theorem is known in the calculus of variations (see [12]). 

Theorem 2.1. Let the assumptions (2.4) and (2.5) hold. If the functional F is 
finite at some uo E V and the functional G is continuous and finite at Auo E Y, 
then there exists a minimizer u to Problem P and a maximizer p* to Problem P*. 
Besides, 

(2.8) inf P = sup P* 

and the following duality relations hold 

(i) F(u) + F* (A*p*) - (A*p*, u) = 0, 
(2.9) (ii) G(Au) + G*(-p*) + ((p*, Au)) = 0. 
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Remark 2.1. The above relations are equivalent to the generalized differential equa- 
tions 

(2.10) (i) A*p* E OF(u), 

(ii) -p* E &G(Au). 

2.3. Problems with uniformly convex functionals. Henceforth we assume 
that the functional G possesses the additional convexity properties formulated be- 
low. 

Definition 1. We say that a continuous functional G: Y --> R is uniformly convex 
on a ball B(0, 6) := {y E Y I IyIYI < 6} if there exists a continuous functional 

6: Y -> IR+ such that 6(y) = 0 iff y is zero element of Y and 

(2.11) G(Y1+Y2 )+ I6(Y2 -Y1) < 1 (G(yl) + G(y2)) Vyl, Y2 E B(0, 6). 

It follows directly from (2.11) that any continuous uniformly convex functional is 
convex. Moreover, the functional be (forcing functional [14]) reinforces the usual 
convexity inequality. Several examples of uniformly convex functionals are pre- 
sented in Section 3. 

Remark 2.2. Typically, the functional be is given by a continuous strictly increasing 
function of the norm IIyI. One can find the corresponding definitions of uniformly 
convex functionals in [14], [22]. 

Now, we are in a position to present a general form of a posteriori error estimate 
for variational problems with uniformly convex functionals. 

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold and 
(i) G is uniformly convex on a ball B(0, 8), 

(ii) the solution u of Problem P and an element v E V are such that Au, Av E 
B(0, 6). 

Then 
(2.12) 

(D6 (Ae) < M (v, y*) :=MF(A*y*, v) + MG (y*, Av) Vy* E Y*v 

where e = v - u and 

MF(A*y*, v) : (F(v) + F*(A*y*) - (A*y*, v)), 

MG (Y*, Av) : (G(Av) + G* (-y*) + ((y*, Av))). 

Proof. Since F E Fo(V) and G is uniformly convex, we obtain 

(D6 (Ae) < [ (F(v) + G(Av)) + (F(u) + G(Au)) - G(A(vIU)) -F(v+u). 

The element u is a minimizer, therefore, 

G(Au) + F(u) = J(u) < G(A (u+v)) + F(u+v), 

and we arrive at the basic estimate 

(2.13) 1D6 (Ae) < -(J(v,Av) - J(u,Au)) Vv E B(O,6). 

In view of Theorem 2.1 

(2.14) F(u) + G(Au) = inf P = sup P* =-F*(A*p*) -G*(-p*). 
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Now, (2.13), (2.14) and the inequality 

-J*(A*p*,-p*) > -J*(A*y*,-y*) Vy* E Y 

imply 

be (Ae) < - (F(v) + G(Av) + F*(A*p*) + G*(-p*)) 

K 2 (F(v) + G(Av) + F*(A*y*) + G*(-y*)). 

The above inequality, together with (2.3), results in the desired (2.12). D 

Theorem 2.2 deserves some more detailed comments. The right-hand side of 
(2.12) is the sum of two functionals MF: V* x V --> R and MG: Y* x Y -- R. 
These functionals are nonnegative (see (2.1)) and vanishes iff v and y* satisfy the 
relations (2.9)(i)-(ii) (i.e., iff v = u and y* = p*). Therefore, the majorant M(v, y*) 
is, in fact, a measure of the error in the duality relations for the pair (v, y*). 

Remark 2.3. Let the functional F be uniformly convex on V with a forcing func- 
tional P6. Then instead of (2.13) we have 

(2.15) be6 (Ae) + 'p6(e) < -(J(v, Av) - J(u, Au)) 

and, as a result, (2.12) is replaced by the strengthened estimate 

(2.16) 4D6 (Ae) + 'p6(e) < M (v, y*) Vy* ?Y 

Remark 2.4. Some practically interesting variational problems (e.g., elasticity prob- 
lems with nonconvex energy) are related to functionals which do not satisfy the con- 
dition (2.11). Nevertheless, the duality approach can be successfully extended to 
this case if the key equality inf P = sup P* holds. For these problems a posteriori 
error estimates are obtained in terms of the dual problem (see [30]). 

It is not difficult to verify that 

M(v, y*) - M(v, p*) = J* (A*y* y*) - J* (A*p* -p*) > O. 

Therefore, for any v the right-hand side of (2.12) is minimal if y* = p*. Conse- 
quently, to make the estimate effective we have to find some y* close to p* in Y*. In 
principle, this can be done by solving Problem P* numerically. Regrettably, very 
often the latter problem is more complicated than Problem P and, for this reason, it 
is more effective to use duality relations (2.10) for getting a suitable approximation 
of p*. To this end, we set y* = a*(v), where 

-5*(v) E &G(Av) C Y 

Hence, MG (a* (v), Av) = 0 and we get the estimate 

(2.17) 1D6(Ae) < MF(A*u*(v),v) 

whose right-hand side depends on v only. 
However, the estimate (2.17) cannot be directly applied in one practically im- 

portant case which we consider below. 
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2.4. Problems with linear functional F. Let 

(2.18) F(v) = (l*,v), 1* E V*. 

Since 

F*(v*) = sup(v* - l*,v) ={ i 
if v* = 1*, 

VEV +00 if v* 7~~~ 1*, 
we see that 

MF(A*y*, v) = 2 (F* (A*y*) + (1* - A*y*, v)) = { + 

where 

Q* :={y* E Y* (A*y*,w) = (l*,w) Vw E V}. 

Notice that, in general, a* and Hlj* do not belong to the set Q*, so that the 
right-hand side of (2.17) can become infinite. Therefore, the aim of our subsequent 
analysis is to obtain a modified error majorant M(v, y*) which is finite for all v E V 
and all y* E Y*. The first step on this way is provided by the following 

Lemma 2.1. Let the assumptions of Theorem 2.2 hold and F be given by (2.18). 
Then 

(2.19) 1D6 (Ae) < [MG(y*, Av) + 2 inf inf ((y* , Av)) 

Proof. Since 

2(MF(A*q*,v) + MG(q*,Av)) = G(Av) + G*(-y*) 

+ ((y*,Av)) + ((q* - y*, Av)) 
+ G* (-q*) - G* (-y*) Vq* E Ql Y* E 

and 

G* (-q*) - G* (-y*) < ((y* -q*, )) V, E 9G* (-q*) 

we obtain 

2(MF(A* q*, v) + MG(q*, Av)) 

(2.20) < G(Av) + G*(-y*) + ((y*,Av)) + ((y* - - Av)) 
- 2MG(y*, Av) + ((y*-q*, -Av)) Vq* E Q* 

Now (2.12) and (2.20) imply 

(2.21) 1D6 (Ae) < MG(y*, Av) + 2((y*-q*, - -Av)). 

Taking the infimum over q* and ( we end up with (2.19). 0 

Corollary 2.1. If G* is Gateaux-differentiable, then from (2.21) we derive the 
estimate 
(2.22) 
4s (Ae) < MG(y*, Av) + 2 inf ((y*-q*, G*'(-q*) - Av)) 

=MG(y*, Av) + inf (((y-q*, G*I(-q*) -G*'(-y*))) 

+ ((y* - q*, G*(-y*) - Av))). 



A POSTERIORI ERROR ESTIMATION 487 

Let H E Fo(Y), H(y) > 0 for all y E domH and H(O) = 0. By H*: Y* -> R+ 
we denote the functional conjugate of H. Then, in virtue of the Joung-Fenchel 
inequality 

(2.23) ((<*')) ? H* (*) + H(s) V E Y, (* E Y*, 
we obtain 

(2.24) ((y* - q*, G*'(y*) - Av)) < H (G*'(-y*) - Av) + H*(y* - q*). 

Now, from (2.22) and (2.24) we deduce a modified majorant M: 

(2.25) b6 (Ae) < M (v, y*) :=MD (y*, Av) + MR (y*). 

Here 

(2.26) MD(Y*, Av) MG(y*, Av) + 'H(G*'(-y*) - Av) 

and 

(2.27) MR(Y*) 1 inf q[(Y* q*, G*f(-q*) - G* (-y*))) + H* (y* - q*) 
2 qJE , 

We note that both summands of M depend on the functional H whose form is 
rather arbitrary, e.g., in the simplest case, one can take 

H(y) = 2 flyfl2 H*(y*) 1 _ly*1l2 

Thus, we see that the relations (2.25)-(2.27) give the general form of various a pos- 
teriori estimates. In practice, this freedom can be utilized to get the most rigorous 
error majorant. 

We also note that these two summands have different, but clear sense. The first 
term MD (y*, Av) is nonnegative and equal to zero iff v and y* satisfy the duality 
relation 

Av = G*'(-y*), 

which is true for exact solutions p* and u (cf. (2.9) (ii)). Hence, MD (y*, Av) should 
be considered to be a measure of the error in these relations. 

The term MR(y*) is nonnegative and finite (unlike MF !) for all y* E Y*. It is 
equal to zero iff y* E Q*, i.e., iff the equation A*y* - 1* 0 O holds. Consequently, 
MR(Y*) is a generalized measure of the residual 

R(y*) = A*y* -I* 

expressed via the dual variable y*. 
The functional MD (y*, Av) can be directly computed if v and y* are given. How- 

ever, finding the value of MR necessitates solving an auxiliary minimization problem 
on the set Q.* Below we consider the case when computing MR is reduced to an 
unconstrained minimization problem for a convex functional JO. For the sake of 
simplicity we prove this assertion under some additional assumptions which, how- 
ever, are not very restrictive and can be verified in concrete examples. 

Assumption. Suppose that there exist two convex continuous functions h :IR 
IR+ and h* IR --> R+ which are mutually conjugate and satisfy the inequalities 

(2.28) cl I t Ice'< h(t) < C2 I t ICe2l 

(2.29) ((r* - y*, G*'(*) - G*'(y*))) < h* (lq* -y* 11*) V*, y* E Y* 

where c2 > cl > 0 and a2 >? a1 > 1- 



488 S. I. REPIN 

Theorem 2.3. Let the conditions of Lemma 2.1 and the foregoing Assumption be 
satisfied. Then 

(2.30) be (Ae) < MD(y*, Av) + MR(y*), 

where 

(2.31) MD(Y*, Av) = MG(y*, Av) + 1h (HIG*'(-y*) - Avll), 

(2.32) MR(y*) - inf {h( lAw II) + ((y*, Aw)) - (1*, w)} 
wGEV 

Proof. Let us set H(y) = h(Ilyll) and H*(y*) h*(lly*ll*). Making use of (2.27) 
and (2.29) we represent the function MR as 

(2.33) MR(y*) = inf h*(IIq* - 11J 

Hence, we obtain 

MR(y*) =- sup {-h*(Ilq Y*IIJI 
q* EQ*1 

=- sup inf {(A*q* - 1*,w) - h*(lIq* - y*fl)} 
q*EY* WEV 

=- sup inf L(w,,q*), 
*Ey* wGV 

where 
L(w, r*) = l(A*r*-I*, w) + (A*y*, w) - h* (Il7* 1*). 

The function w ~-+ L(w, r/*) is convex and continuous for anyq* E Y*. The function 
77* --) L(w, /*) is concave and continuous for any w E V. Besides, from (2.28) it 
follows that h*(t) > c*t'*, where c* = (c2a2)1 (c*)1 and c2 = > 1, SO 

that L(O,q/*) -- -oc if |n*| |* +oo. Therefore, inf sup L = sup inf L and 

(2.34) MR(y*) =-inf sup L(w,,q*) - inf Jo(w), 
WEV Tq* Ey* WEV 

where 

Jo(w) = h(HlAwH1) + (R(y*),w). 
In view of (2.28) and (2.2) the functional Jo is coercive on V. Thus, by standard 
technique, we establish the existence of w E V such that Jo(wv) < Jo(w) Vw E V. 
Now, (2.26) comes in the form (2.31) and (2.34) yields (2.32). D 

At the end of this section we prove the consistency of the duality error majorant 
given by the estimate (2.30). 

Theorem 2.4. Suppose that the functionals G(y) and G*(-y*) are continuous at 
y = Au and y* = p*, respectively. Let {Vk} and {Yk} be such sequences that 

IlVk -UIV ~4 and II*p*I0 
llVkUllVk--++o 3 n k P1* k-+oo3 ? 

Then the right-hand side of (2.19) tends to zero as k -? +oo. 
If, in addition, the functional G* has a continuous Gateaux derivative, then 

(2.35) M(Vk,Yk) - O as k - 0. 
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Proof. It is straightforward to show that, under the continuity conditions imposed 
on A, G and G*, the following limit relations hold 

Avk -Au in Y, 
G(Avk) - G(Au), 
G*(-y*) G*(-p-) 

Thus, we obtain 

(2.36) MG(Yk, AVk) - [G(Au) + G* (-p*) + ((pv Au))] = 0. 

By virtue of (2.9)(ii), Au E &G*(-p*). Therefore, 

(2.37) inf inf ( q, AVJ 
q*EQ* $~E&G*(-q*)b 

< ((Yk-p, Au-Av)) A < - p*| ||* |Au - AVkII 0. 

Based on (2.36) and (2.37), it is concluded that the estimate (2.19) tends to zero. 
Let us prove (2.35). We have 

(2.38) 

MD (Yk, Avk)= MG(y*, Avk) + 1h( ||G*I(-y*) - Avk |) 

? MG(y, AVk) + lh( JG*'(-y*)-G*'(-p*)| + |A(u-Vk) 11) 

Due to (2.36) and the continuity of G*', the right-hand side of (2.38) tends to zero 
so that 

(2.39) MD(y0,Avk) -> 0 ask -> +oo. 

By setting q* = p* in the right-hand side of (2.27), we obtain the inequality 

MR(y*) < 4 P*, G* (p*) -G*f(-yk))) + h* (Iy* P* IIJ) > 0 

which together with (2.39) yields (2.35). This completes the proof. D 

2.5. Particular cases of the estimate (2.25). The majorant M depends on 
v E V and y* E Y*. Since v is known, the question of how to define y* arises. We 
explore this important question below. 

Let us assume that p* E Q* C Y* and let H : Y* -> Q* be a continuous operator 
such that Hq* = q* for all q* E Q*. Typically, the form of Q* is dictated by a priori 
differentiability properties of the exact solution and the operator H is defined by 
some post-processing procedure. If v is known, then one can define its counterpart 
in the space Y* via the duality mapping (2.10)(ii): 

(2.40) a*(v) = -G'(Av). 

By setting y* = Hlj* (v) in (2.25) we obtain a common form for an a posteriori error 
majorant M (cf. (1.2)-(1.3)): 

(2.41) be6 (Ae) < M (V) : (v, Il* (v)). 

From Theorem 2.4 and the foregoing assumptions it follows that 

M(vk) - 0 if Vk - u inV. 
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Three main forms of the estimate (2.41) arise when the set Q* is defined in accor- 
dance with (a), (b) or (c) below: 

(a) Q* Y*; 
(2.42) (b) Q* C Y* Q* 7 Y*; Q* 7 Ql*; 

(c) Q* Ql* 

Case (a). If Q* -Y*, then HI is the identity operator, so that 

MD(Hu*(v),Av) = MD(u**(v),Av)= 0 

and (2.41) yields the estimate 

(2.43) D6 (Ae) < MR(u**(v)) 

whose right-hand side consists of the term MR only. 

Case (b). Let Q* be a proper subset of Y* which contains p*, and let Q* Q* 
Then both terms MD and MR can be positive and the corresponding error estimate 
has the form 

(2.44) D (Ae) < MD(Hu*(v),Av) + MR(Hu*(v)). 

Case (c). If Q* - Q*, then Hu*(v) is an element of the set Q*. Therefore, 

MR(HU*(V))= 0 

and (2.41) becomes 

(2.45) 6 (Ae) < MD(Ho**(v),Av). 

Thus, we have described the basic principles by which one can handle efficiently 
the construction of various a posteriori error estimates. In subsequent sections we 
use them on several concrete problems. 

3. EXAMPLES 

Let Q be a bounded connected domain in the Euclidean space iRd with Lipschitz 
continuous boundary &Q and let V denote a subspace of the Sobolev space W1'a (Q) 
formed by functions vanishing on &Q in the usual sense of traces. We set Av := Vv 
and consider variational problems for the functional 

J(v, Vv) = (g(Vv) + f (v)) dx. 

Now G and F are integral functionals whose integrands g: iRd S-* R and f: R -* R 
are convex differentiable functions. As usual, we denote their conjugate functions 
g* and f*, respectively. We identify the spaces Y and Y* with the Lebesgue spaces 
La(Q,IRd) and L* (Q,IRd), a* A and the number a > 1 is taken,such that the 
above integral has sense. Lastly, in the considered case 

(y *, y) := y* *ydx and A*y* :=-divy* E V*. 
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3.1. Example 1. Let g(y) = Ay y, where A is a symmetric real matrix satisfying 
the conditions 

(3.1) VI 12< A ? < V2 I 
12 VqeIRd, 

for some V2 > vl > 0. It is straightforward to check that the functional G is 
uniformly convex on any ball. The two parts of the error majorant M (cf. (2.12)) 
are given by the relations 

(3.2) MG(Y*, Av) = (Ay* + Vv) -(y* + AVv) dx, 

(3.3) 

MF(A*y*,v) = j(f(v) -y* .Vv)dx + - sup (y* Vw - f(w)) dx, 
Q ~~~~WEVQ 

where A is the matrix inverse of A. If the function f* (-divy*) is summable, 
then (3.3) can be estimated by a more symmetric expression 

(3.4) MF(V,Y*) < (f(v) + f*(- divy*) - y* Vv) dx. 2 

In particular, if f(v) = I V2 + pV, where A E R and A E R+S, then f*(v*) 
- v-)2. In this case, = 2 and for any 

y* E H(Q;div) := e,q* Y* 11 divl7* E L2(Q)} 

we obtain 

(3.5) MF(v,y*)<4 Av?+ divy* +?A112 

where 1 I denotes the norm in L2 (Q). Now both functionals G and F are uniformly 
convex, and the relation (2.15) holds for 

N(Ve) = 4 AVe Vedx, (p(e) Ie e2 dx. 

As a consequence, we get (2.16) in the form 

(3.6) 

jAV(v-u) V(v-u)dx+A llv-u12 

< (Ay* + Vv) (y* + AVv) dx + Av + divy* 2 

This estimate deteriorates if f is a linear function, so that for A = 0 we should use 
the majorant M (see 3.4). 

3.2. Example 2. Let g(y) = y 1 Y and f(v) = l*v, where a > 1. Then Problem 
P is to minimize 

Io(v) j v (Vv +?l*v) dx 

over the space V, and Problem P* is to maximize 

,* (Y*) L Y* IO* dx 

over the set 

Q*i ={y**EY* := L, (QIR d) 11 Y* .Vwdx= /*wdx VwEV}. 
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The functional G(y) f g(y) dx is uniformly convex. For aO > 2 this fact follows 
from the inequality (see [35]) 

(3.7) Y1 +Y2 
| adx + Y1 2Y2 | a dx < j(IY1 I + IY2 I') dx, 

which is valid for all yi, Y2 E Y. Hence, (3.7) implies (2.11) with 

@(Y1) = 2a1 I Y I' dx. 

One can prove that for 1 < a < 2 this functional is uniformly convex also [22]. 
By virtue of (3.7) we derive the basic duality estimate 

f 1 
(3.8) 2 Ve I' dx < - (IJ(v) - I*(q*)) Vv E V, q* EE Q* 

which is, in fact, a particular form of (2.13) for power growth functionals. Further 
analysis of the duality error estimates for this class of variational problems can be 
found in [27]. 

3.3. Example 3. Let g(Vy) = 2AVy Vy + (I Vy 1), where fb R -3 R is 
a convex differentiable function, f(v) = l*v and 1* E L2(Q). In this case, the 

choice of functional spaces depends on the growth condition for b. We assume that 

this growth is less than quadratic. Then V {v E W1'2(Q) v = 0 on iQ 

III2 2= cnspc 
v f = VV 12 dx and Y can be identified with the space L2 (Q, Rd). Now the 

relation (2.40) reads 

(39) (i) * (v) (x) =-g' (Vv) (x) 

(ii) Vv(x) = g*'(-5*)(x) for a.e. x E Q, 

where g'(y) = Ay + '(1 y I) Y . It is straightforward to prove that the functional 

G is uniformly convex and that 

2jAV(v-u) - V(v-u)dx < J(v,Vv)-J(u,Vu) VvE V. 
2 

Therefore, (cf. (2.13)) the basic estimate (2.25) holds with 4(Ae) 1 e 2, where 

e III2 _ AV(v-u) V(v-u) dx. 

One can prove that under the above assumptions, the functional G* is Gateaux 

differentiable and 

(3.10) IIG*'(y*) - G*'(i7*) |< C3 IIY* - 'q* 

(3.11) ((Y* - 77* G*'(y*) - G*/(i7*))) ?C3 111* - Y* C3 = Vi 1 

Thus, setting 

(3.12) h(t) = vi t2, h* (t) = C3 t2 
4 

in (2.31)-(2.32) we deduce the estimate 

(3.13) 1 ||| e 1112 < MD(Y*,VV)?+MR(Y) Vy1<Y E 4 - 
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where 

MD (Y*,7VV) g [j((Vv) + g*(-Y*) + Y* Vv) dx 

(3.14) ?+C4j (49*/(y* - Vv) dx,] 

(3.15) MR(y*) -inf (C4 
I 

VW 12 -?(y*)w)) dx, 

C4 - l and 

Z(y*) := divy* + 1*. 

Since 

(3.16) g(y) + g*(-y*) ? y y < (Y - g*(-Y*)) . (Y* + g'(y)), 

we see that the term MD (y*, Vv) vanishes if the duality relations (3.9) hold. 
Now, we focus our attention on MR (y*). First of all we note that for arbitrary 

y* E Y*, the term R(y*) should be understood in the sense of distributions. There- 
fore, an adequate measure of MR (y*) is given by the quantity 

ll1(Y*)Il( :11= SUP f (*W 
- * 

Vw) dx 
wCV IVwII 
w$O 

which is nonnegative and finite for any y* E Y*. Indeed, we can estimate the term 
MR(y*) as follows 

MR(Y*) = SUP f (?(Y*)W -C4 I VW 12) dx 
(3.17) wCV QV 

< sup I|R (Y J )I t - c4t2) ? v1lj(y*) 11) 

If y* E H(Q; div), then 1Z (y*) E L2(Q) and 

(3.18) II,(Y*)II(-1) < C(Q) IIZ(Y*)IIQ 

where C(Q) is a constant in the Poincare-Friedrichs inequality 

Iw?Q < C(Q) IIVWIIQ Vw E V. 

Whence, in this case we can estimate MR(y*) via the L2-norm of the residual 

(3. 19) MR(Y* ) < C2 (Q)V1 
1 11 ,R(Y* )11 2 

3.4. Example 4. Let g(y) = 'Ay. y and f(v) = l*v. This simple and at the 
same time important example deserves special consideration. We use it to show the 
performance of our method in a more transparent form. 

In the considered case, A is a symmetric matrix defined as in Example 1, V, Y 
and Y* are defined as in Example 3, and g* (y*) = 2Ay* . y*. It is easily verified 
using elementary manipulations that the basic duality inequality yields the following 
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estimate 

(3.20) 

2 AV(v - u) - V(v - u) dx 2 

- J(v, Vv) - J(u, Vu) J(v, Vv) - sup P* 

< j( (AVv . Vv + Ay* y*) + l*v + 2(Aq* q - Ay* y*)) dx, 

where q* e Q* and y* E Y*. Since 

Aq* q* -Ay y* = A(q- y*). (q* -y*) - 2Ay* (y* - q*) 

and q* meets the integral identity 

J q* Vwdx = 1|:j*wdx Vw E V, 

we rewrite (3.20) as 

21ll e 
Il2 <j| (iAVv Vv + 

? 
Ay* y* + Vv y*) dx 

(3.21) + (Vv + Ay*) . (q* y*) dx 

+ if A(q* y*). (q* y*) dx. 

Now we apply the inequality (2.23) with 

H(y) = 2 Ay ydx, H*(y) Ay* y*dx 13>0 

to the second integral in the right-hand side of (3.21). This results in the estimate 

(3.22) e III2 < (1 + ?1) )m2(y*, Vv) + (1 + O-l) m2 (y*), 

where for the sake of convenience we have introduced the terms 

m2(y*, Vv) (AVv + y*)- (Vv + Ay*) dx 

and 

m2(y*) inf A(y* -q*) . (y* -q*) dx. 

By taking the infimum in the right-hand side of (3.22) over the parameter /, we 
arrive at the final estimate 

(3.23) IIIe e mD(y*,Vv) + mR(yY). 

To obtain computationally more attractive forms of mR(y*), we note that 

(3.24) 2 m2(y*) =- inf j ( AVw Vw - R(y*)w) dx 
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(cf. (2.32)). From (3.24) by analogy with (3.17)-(3.18) we obtain 

R(Y*) < V-12 l1Z(Y*)lt1 VY* E Y* 
mR(y*) < C(Q, A) IIZ(y*) 11 Vy* E H(Q; div), 

where C(Q, A) is a constant in the inequality 

I W 12 dx < C2(Q,A) AVw Vwdx Vw e V. 

It is worth remarking that (3.23) holds for any y* e Y*. This freedom can be 
utilized to get the most rigorous error bound (see [31]). 

We conclude this consideration with comments about the relationship between 
duality and projection error estimates. Let Vh be a set of finite-dimensional spaces 
embedded in V which satisfy the usual conditions (see, e.g., [8, 20]) required to 
guarantee that the corresponding Galerkin approximations uh tend to u as h -> 0. 

Since u and uh are minimizers of Problem P and of its discrete analog, respec- 
tively, we have 

J(uh,Vuh) - J(u, Vu) < J(Vh, Vvh) - J(u, Vu) 

= 2 AV(vh -u) -V(Vh -u) dx VVh E Vh- 2 

Therefore, (3.20) yields the inequality 

AV(uh - u) V(uh - u) dx 
(3.26) 

< AV(vh-U) - V(vh-u) dx VVh E Vh, 

which gives 

(3.27) ||U - Uh||V ?< C5 incf ||U -Vh HV, c5 V2/v 
VhE3Vh 

This inequality (also known as Cea Lemma see, e.g., [8]) means that an upper 
bound of the error is given by the distance (in the space V) between the exact 
solution u of Problem P and the set Vh containing the Galerkin approximation Uh. 

Let us set v = uh, y Y* -AVuh and apply (3.23). Since mD(Y*, VUh) 0 O 
we obtain 

J AV(uh - u) V(Uh-u) dx < mR(Y*) 

(3.28) 

< XjA(y -q*) - (yh-q*)dx Vq* Q* 

This inequality yields the estimate 

(3.29) |U|-UhlIv < C6 inf *lyh q*l* 

where c6 = v1. The estimate (3.29) is, in a sense, dual to (3.27). It shows that an 
upper bound of the error is given by the distance (in the dual space Y*) between 
y* (which is a dual counterpart of the Galerkin approximation Uh) and the set Qj* 
containing the exact solution p* of Problem P*. 
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4. CONNECTION WITH OTHER METHODS 

In this section, we apply the general scheme presented in subsection 2.5 to a class 
of variational problems, and we show that the a posteriori error estimates (A), (B) 
and (C) can be derived from the duality error estimate (see also [26, 28]). For this 
purpose we take the problem 

(4.1) inf J(v, Vv), J(v, Vv) (g(Vv) +1*v) dx 

that has been analyzed in Example 3. 

4.1. Residual error estimates. The Euler-Lagrange equation associated with 
problem (4.1) is 

divp* + 1* = 0, p* -g'(Vu). 

Hence, for any v E V the function 

R(v) := R(u* (v)) = diva* (v) + 1* 

is the residual of this equation if v* (v) is defined in accordance with the duality 
relations 

(4.2) U*(v) =-g'(Vv). 

By setting y* =*(v) in (3.13) (cf. (2.42)(a)) we obtain 

41'I e 1112 < MR(U*(V)) 

(4.3) - inf (C4 I VW 12 +?*(V) VW + ?*W) dx 

< IIR(v) 112) 

Thus, we see that such choice of y* leads to an a posteriori error estimate whose 
right-hand side is given by the negative norm of the residual. If v is a finite element 
approximation of u, then the explicit calculation of IIR(v)ll(-I) is based on the 
Clement's interpolation theorem [9] and the corresponding error estimate is a sum 
of element residuals and interelement jumps (see, e.g., [36]). 

4.2. Error estimates based on gradient averaging. In many cases, it is known 
a priori that p* possesses additional differentiability properties and, therefore, be- 
longs to a proper subset Q* of Y*. Then, it is natural to expect that any "good" 
approximation of p* should also be an element of Q*. An obvious way to get the one 
is to find a regularized function v* by mapping v* (v) on Q*. For this purpose we 
need a computationally inexpensive continuous operator HI: Y* - Q*. Operators 
with these properties are known in the literature as gradient (stress) averaging or 
recovery operators (see, e.g., [5, 6, 37]). Below we justify recovery based methods 
via the duality theory and show that the duality error majorant (3.13) yields the 
estimate (4.4) whose main part coincides with the estimate of the group (B). 

Proposition 4.1. If v* = flH*(v), where H: Y* Q* is a recovery operator, 
then 

(4.4) 4e jj2 C7 11 U*(V) - *IQ? MR( ) 
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Proof. By virtue of (3.16) we present the term MD as 

MD (5*, VV) = [j (Vv - g*'(-C*)) . (F + g'(Vv)) dx 

+C4J (9*V(C*, v)2 dx] 

Now we recall that 

-5*(v) = g'(Vv) and Vv = g*'(-v*(v)), 

so that 

(4.5) 

MD(5*,VV) = 2 [j| (g'(-C*(V))-9*'(-C*)). (5f*-C*(v)) dx 

+C4 J(g* (-C*,- g*/Qj* (V)))2 dx]. 

Making use of (3.10), (3.11) and (4.5) we obtain 

(4.6) MD(a*, VV) < 2 (1 + C3C4) Iu *(V) - 11 

Now (4.4) follows from (3.13) and (4.6) if set C7 = 5C3 8D 

Remark 4.1. The second term in the right-hand side of (4.4) can be estimated as 

MR (5*) -inf j I VW 12 + (,J*-P*) - VW) dX < C3 Ila*-P* 112 

Hence, under the usual assumption that I5* -p*IIQ is negligible with respect to 

- j* (v)ll,, we arrive at the recovery based error estimate 

<_e j2 C8| IU*(V) - 5jQj 

where c8 = 5c3. However, it is quite possible that in some cases the above as- 
sumption is not true. Therefore, a rigorous a posteriori estimate for averaged 
approximations has the form (4.4) and must include the term MR (see [31] for a 
more detailed discussion of this subject and for numerical examples). 

Remark 4.2. The efficiency of the above estimates strongly depends on the choice 
of an operator H that must be mathematically stable and computationally inexpen- 
sive. A study of concrete operators and their mathematical properties suggests an 
important but separate problem of approximation theory which, however, is beyond 
the frame of the present paper. At this point we refer to, e.g., [1, 6, 10, 11, 37], 
where these questions are addressed for finite element methods. 

4.3. Error estimates based on data equilibration. Since p* E Q7*, it is possible 
to set Q* = Q* (cf. (2.42)(c)). The set Q* consists of functions q* satisfying 
the equation divq* + f = 0 that often appears in applications as the equilibrium 
equation. Hence, a mapping Hl: Y* Q* is naturally called an equilibration 
operator. Let us define a function 

a* Hu* (v)E Q* . 
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Then MR(-&*) 0 and by analogy with (4.5) we obtain 

MD(a:*, Vv) = [j (g*'(-C*(V))a-*) cr-(v)) dx 

+ C4 J (9* - C *, (f* (V)))2 dx] 

< j | (C '* -_ *(V)12 + C4 -C VVI2) dx 

which together with (3.13) implies the estimate 

(4 7) 21 e 2< ?* + 9g'(VV)2 + *'(-(*) )dx. 

The latter gives the general form of the equilibration type error estimator for the 
considered class of problems. It should be emphasized that the right-hand side 
of (4.7) is, in fact, a measure of the error in the duality relations (3.9). 

The function '* can be also used in a different way. Indeed, let us substitute 
y* = 5*(v) in (3.13). Then, 

MR(u* (v)) -inf j (C4 I VW 12 _(U*(V))W) dx 

=C3 inf j u*(v)-/*12 dx 

and we obtain a simple estimate 

(4.8) e III2 < Cg *(V) *12dx 

where cg = 4c3. Note also that for quadratic functionals a similar estimate (but 
with a smaller constant) follows straightforwardly from (3.29). 

It should be remarked that, in general, an operator Hl: Y* Q* is difficult to 
construct. However, there is one particular case when the estimate (4.8) can be 
applied fairly easily. Suppose that n = 2 and that we know a function a* satisfying 
the equation divu* + 1* = 0 exactly (the latter assumption may be rather obligatory 
if 1* 74 const). Then any function y* EQ* can be presented via o* = (*,, a*2) 
and a stream function 0 E V: 

(4.9) Y* 
0= o-ao2 ' 82= 2 + aol 

By substituting (4.9) into (4.8) we get the estimate 

11e III 2 < cg inf | 
* 

(J- a*, + '90Z0 + (T-0-01)dx. O1 ?9Vf (1~ 01 aX2 2 0 ax 

For a class of nonlinear 2D-problems in continuum mechanics, this type of a poste- 
riori error estimate was used in, e.g., [22]. 

4.4. Concluding remarks. Finally, we add some remarks on the scope of the 
methods analyzed in this section. 

The general estimate (3.13) is valid for all pairs of functions (v, y*) E V x Y 
Various estimates can be derived from (3.13) if the dual variable y*'is defined by 
means of the approximate solution v, duality relations (DR) and a post-processing 
operator HI: Y* Q* E Y*. This procedure can be presented diagrammatically as 

DR ri v )----* A/I) M(v, Y). 
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If HI is the identity operator (i.e., if no post-processing is used), then y* = v*(v) 
and M(v, y*) yields the residual error estimate. Other methods are related to some 
post-processing of v* (v). If H is an averaging (smoothing) operator, then this way 
leads to error estimators of the group (B) (e.g., to the so-called ZZ-estimator [37]). 
If H is a procedure that puts v* (v) in equilibrium, then M(v, fl* (v)) coincides 
with an estimator of the group (C). 

It should be emphasized that the above scheme is very flexible. It can be applied 
to a wide variety of ad hoc operators H and, thus, provides a simple way for taking 
into account any a priori information on such properties of the exact solution as 
higher differentiability, boundedness, localization of singularities, etc. 
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